

Global United Technology Services Co., Ltd.

Report No.: GTS201904000036E02

SPECTRUM REPORT

Applicant:	Dragino Technology Co., Limited		
Address of Applicant:	Room 202, Block B, BCT Incubation Bases (BaoChengTai), No.8 CaiYunRoad LongCheng Street, LongGang District ; Shenzhen 518116,China		
Manufacturer/Factory:	Dragino Technology Co., Limited		
Address of Manufacturer/Factory:	Room 202, Block B, BCT Incubation Bases (BaoChengTai), No.8 CaiYunRoad LongCheng Street, LongGang District ; Shenzhen 518116,China		
Equipment Under Test (E	EUT)		
Product Name:	LoRaWAN Sensor Node		
Model No.:	LSN50		
Trade Mark:	Dragino		
Applicable standards:	ETSI EN 300 220-1 V3.1.1 (2017-02) ETSI EN 300 220-2 V3.1.1 (2017-02)		
Date of sample receipt:	April 03, 2019		
Date of Test:	April 04-22, 2019		
Date of report issue:	April 22, 2019		
Test Result :	Pass *		

*In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Ø **Robinson Lo**

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	April 22, 2019	Original

Prepared By:

Bill. yuan

Date:

April 22, 2019

Project Engineer

Binsor

Reviewer

Date:

April 22, 2019

Check By:

GTS

3 Contents

			Page
1	COVE	R PAGE	1
2	VERS	ON	2
3	CONT	ENTS	3
5			
4	TEST	SUMMARY	4
5	GENE	RAL INFORMATION	5
		ENERAL DESCRIPTION OF EUT	
		EST MODE	
	5.3 T	EST FACILITY	7
		EST LOCATION	
	5.5 C	ESCRIPTION OF SUPPORT UNITS	7
		EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
	5.8 C	THER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TEST	INSTRUMENTS LIST	8
7) TECHNICAL REQUIREMENTS SPECIFICATION IN ETSI EN 300 220-2	10
		EST CONDITIONS	
		RANSMITTER REQUIREMENT	
	7.2.1	Operation Frequency	
	7.2.7	Effective Radiated Power	
	7.2.2	Duty Cycle	
	7.2.3	Occupied Bandwidth	
	7.2.4	Frequency Error	
	7.2.6	TX Out Of Band Emissions	
	7.2.7	Transient power	
	7.2.8	Adjacent Channel Power	
	7.2.9	Adaptive Power Control	
	7.2.10		
	7.2.11	TX Behaviour under Low-voltage Conditions	
	7.2.12	Transmit spurious emissions	
		ECEIVER REQUIREMENTS.	
	7.3.1	Receiver sensitivity	
	7.3.2	Clear Channel Assessment threshold	
	7.3.3	Polite spectrum access timing parameters	
	7.3.4	Adaptive Frequency Agility	
	7.3.5	Adjacent channel selectivity	
	7.3.6	Receiver saturation at Adjacent Channel	
	7.3.7	Spurious response rejection	
	7.3.8	Behaviour at high wanted signal level	
	7.3.9	Bi-Directional Operation Verification	
	7.3.10		
	7.3.11	Spurious emissions	
0		SETUP PHOTO	
8	1591		33
9	EUT C	ONSTRUCTIONAL DETAILS	33

4 Test Summary

Report No.: GTS201904000036E02

	ETSI EN	ETSI EN		
Test item	300 220-2 300 220-1 Clause Number		Condition	Result
Operating Frequency	4.2.1	5.1.1		Pass
Unwanted emissions in the spurious domain	4.2.2	5.9.1		Pass
TX effective radiated power	4.3.1	5.2.1		Pass
TX Maximum e.r.p. spectral density	4.3.2	5.3.1	Applies to EUT using annex B bands 1, L. Applies to EUT using DSSS or wideband techniques other than FHSS modulation, using annex C band X.	N/A
TX Duty cycle	4.3.3	5.4.1	Not applicable to EUT with polite spectrum access where permitted in annex B. table B.1 or annex C, table .1 or any NRI.	Pass
TX Occupied bandwidth	4.3.4	5.6.1		Pass
Tx out of band emissions	4.3.5	5.8.1	Applies to EUT with OCW> 25 kHz.	Pass
TX Transient	4.3.6	5.10.1		Pass
TX Adjacent channel power	4.3.7	5.11.1	Applies to EUT with OCW<25kHz.	N/A
TX behaviour under low voltage conditions	4.3.8	5.12.1	Applies to battery powered EUT.	Pass
TX Adaptive power control	4.3.9	5.13.1	Applies to EUT with adaptive power control using annex C band AA.	N/A
TX FHSS	4.3.10	4.3.5	Applies to FHSS EUT.	Pass
TX Short term behaviour	4.3.11	5.5.1	Applies to EUT using annex C bands Y, Z,A, AB, AC, AD.	N/A
RX sensitivity	4.4.1	5.14.1	Applies to EUT with polite spectrum access.	N/A
Clear channel assessment threshold	4.5.2	5.21.2	Applies to EUT with polite spectrum access.	N/A
Polite spectrum access timing parameters	4.5.3	5.21.1	Applies to EUT with polite spectrum access.	N/A
RX Blocking	4.4.2	5.18.1		Pass
Adaptive Frequency Agility	4.5.4	5.21.4.1	Applies to EUT with AFA.	N/A

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

EUT not support Polite spectrum access equipment.

5 General Information

5.1 General Description of EUT

LoRaWAN Sensor Node		
LSN50		
863MHz~870MHz		
35		
200kHz		
200kHz(Declared by manufacturer)		
FSK		
Integral antenna		
0dBi(Declared by applicant)		
Battery: DC 3.6V		

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	863.1MHz	10	864.9MHz	19	866.7MHz	28	868.5MHz	
2	863.3MHz	11	865.1MHz	20	866.9MHz	29	868.7MHz	
3	863.5MHz	12	865.3MHz	21	867.1MHz	30	868.9MHz	
4	863.7MHz	13	865.5MHz	22	867.3MHz	31	869.1MHz	
5	863.9MHz	14	865.7MHz	23	867.5MHz	32	869.3MHz	
6	864.1MHz	15	865.9MHz	24	867.7MHz	33	869.5MHz	
7	864.3MHz	16	866.1MHz	25	867.9MHz	34	869.7MHz	
8	864.5MHz	17	866.3MHz	26	868.1MHz	35	869.9MHz	
9	864.7MHz	18	866.5MHz	27	868.3MHz			

The test frequencies are below:

Channel	Frequency
The lowest channel	863.1MHz
The middle channel	866.5MHz
The Highest channel	869.9MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Receiving mode	Keep the EUT in receiving mode

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) — Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None

5.6 Deviation from Standards

None

5.7 Abnormalities from Standard Conditions

None

5.8 Other Information Requested by the Customer

None

6 Test Instruments list

Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019

RF Conducted:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 27 2018	June. 26 2019			
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019			

7 Radio Technical Requirements Specification in ETSI EN 300 220-2

7.1 Test conditions

	Ambient:	Temperature .:	+15°C to +35°C		
	Ambient.	relative humidity:	20 % to 75 %		
Normal conditions		Battery:	Nominal		
	Power supply:	AC mains source	Nominal		
	Заррту.	Other power sources	Nominal		
	Ambient:	Temperature .:	-20°C to +55°C		
Extreme conditions	Power supply:	Battery:	0.9 and 1.3 mutiplied for lead-acid battery 0.85 and 1.15 mutiplied for "gel-cell" type batteries 0.85 and 0.9 mutiplied for lithium and nickel- cadmium type batteries For other types it may declared by manufacturer		
		AC mains source	\pm 10% of the norminal power source		
		Other power sources	Declared by manufacturer		

7.2 Transmitter Requirement

7.2.1 Operation Frequency

The Operational Frequency band(863~870MHz) was declared by the manufacturer which conforms annexes B, C or any NRI of ETSI EN 300220-2.

7.2.2 Effective Radiated Test Requirement:	ETSI EN 300 220-2 clause 4.3.1
Test Method:	ETSI EN 300 220-1 clause 5.2
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Receiver setup:	RBW=120kHz, VBW=300kHz, Detector= peak
Limit:	25mW=14dBm (Refer to Annex B of ETSI EN 300220-2)
	2511W = 14dBill (Refer to Annex B of ETSI EN 300220-2)
Test setup:	AE EUT Antenna Tower Antenna Tower I.50m (Turntable) Tost Receiver Tost Receiver Tost Receiver
Test procedure:	 Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring
	 receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable.

7.2.2 Effective Radiated Power

	Report No.: GTS201904000036E02
	With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm)) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
Measurement Record:	Uncertainty: ± 1.5dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test conditions	Channel	ERP Level (dBm)	Limit (dBm)	Result
	Lowest	9.67		
Normal	Middle	9.65	14	Pass
	Highest	9.69		

Remark: Peak value is applicable.

7.2.3 Duty Cycle

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.4
Limit:	1%
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test procedure:	An assessment of the overall Duty Cycle shall be made for a representative period of Tobs over the observation bandwidth Fobs. Unless otherwise specified, Tobs is 1 hour and the observation bandwidth Fobs is the operational frequency band. The representative period shall be the most active one in normal use of the device. As a guide "Normal use" is considered as representing the behaviour of the device during transmission of 99 % of transmissions generated during its operational lifetime. Procedures such as setup, commissioning and maintenance are not considered part of normal operation. Where an acknowledgement is used, the additional transmitter on-time from a message responder shall be declared only once whether included in the message initiator Duty Cycle or in the message responder Duty Cycle. Center frequency: The nominal operating frequency
	RBW=100kHz
	VBW>=3*RBW
	Span=0 Hz
	Trace detector: Peak
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Result:	Pass
Kesult:	Pass

Measurement Data

Channel	Ton time(s)	Tcycle time(s)	Dutycycle	Limit	Result
Lowest	0.15	60	0.25%	10/	Pass
Highest	0.15	60	0.25%	1%	Pass

7.2.4 Occupied Bandwidth

Test Requirement:	ETSI EN 300 2	220-2 clause 4.3.4			
Test Method:	ETSI EN 300 220-1 clause 5.6				
Receive setup:	Table	12: Test Parameters fo	r Max Occupied Bandwidth Measurement		
	Setting	Value	Notes		
	Centre frequency	The nominal Operating	The highest or lowest Operating Frequency as declared by		
		Frequency 1 % to 3 % of OCW	the manufacturer		
	RBW	without being below			
	VBW	100 Hz 3 x RBW	Nearest available analyser setting to 3 x RBW		
		At least 2 x Operating	Span should be large enough to include all major		
	Span Detector Made	Channel width	components of the signal and its side bands		
	Detector Mode Trace	RMS Max hold			
	·	1			
		Channel shall be equency Band.	declared and shall reside entirely within the		
	The Maximum	Occupied Bandw	ridth at 99 % shall reside entirely within the		
Limit:		nnel defined by F			
Linin.			FHSS equipment. The Maximum occupied		
			shell less or equal to 50kHz. For 863 MHz		
			e Maximum occupied bandwidth per		
		nel shell less or eq			
Test setup:					
Tost solup.	Spect	rum Analyzer			
		Non-Conducte	d Table		
		1			
		Ground Referen	ice Plane		
Test Procedure:	Step 1:				
			arted, on the highest operating frequency		
			, with the appropriate test signal.		
	-		djusted to ensure that the signal power		
			e noise floor of the analyser to avoid the		
	noise signals o	on either side of th	e power envelope being included in the		
	measurement.				
	Step 2:				
	When the trac	e is completed the	peak value of the trace shall be located		
	and the analys	er marker placed	on this peak.		
	Step 3:				
		upied bandwidth fu	Inction of the spectrum analyser shall be		
	used to measu	ire the occupied b	andwidth of the signal.		
Measurement Record:		·	Uncertainty: ±5%		
Test Instruments:	Refer to section	n 6.0 for details			
Test mode:	Refer to section	n 5.2 for details			
	Pass				

Measurement Data

Test conditions	Channel	99% Occupied Bandwidth (MHz)	FL at 99% BW (MHz)	FH at 99% BW (MHz)	Limit (dBm)	Result
	Lowest	0.095	863.061	863.156		Pass
NVNT	Highest	0.096	869.864	869.960		Pass
LVHT	Lowest	0.094	863.062	863.156		Pass
LVHI	Highest	0.093	869.867	869.960		Pass
LVLT	Lowest	0.095	863.061	863.156	Within Operational	Pass
	Highest	0.095	869.860	869.955	Frequency Band 863 to 870 MHz	Pass
HVHT	Lowest	0.094	863.062	863.156		Pass
	Highest	0.095	869.867	869.962		Pass
HVLT	Lowest	0.095	863.061	863.156		Pass
	Highest	0.096	869.865	869.961		Pass

Remark:

Volt= Voltage, Temp= Temperature

7.2.5 Frequency Error

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.7
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Procedure:	Step 1: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme high temperature and extreme voltage conditions. The frequency of the unmodulated carrier shall be measured and noted. Step 2: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme low temperature and extreme voltage conditions.
Measurement Record:	Uncertainty: ± 0.5ppm
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test conditions	Channel	Frequency (MHz)	A-N (KHz)	B-N (KHz)
	Lowest	863.1	0	0
N(NTNV)	Highest	869.9	0	0
- // 1 0	Lowest	863.1	0	0
B(HTHV)	Highest	869.9	0	0
	Lowest	863.1	0	0
A(LTLV)	Highest	869.9	0	0

Remark:HTHV is the extreme high temperature and extreme voltage condition. LTLV is the extreme low temperature and extreme voltage condition.

7.2.6 TX Out Of Band Emissions

Test Requirement:	ETSI EN 300 220	-2 clause 4.3	.5			
Test Method:	ETSI EN 300 220	-1 clause 5.8	.3			
Receive setup:	Table 16: Test	Parameters for (Out Of E	and for Opera	ting Channel	Measurement
	Spectrum Analy Setting	vser Val	Value		Notes	
	Centre frequency	Opera Frequ				
	Span	6 x Ope	erating			
		Channe 1 k		Resolution bandwidth for Out Of Band domain		f Band domain
	RBW	(see i		measurements		
	Detector Function Trace Mode	Linear		An appropriate averaged to giv	number of samp	ng
		Max	Hold	Applies only for test signal.	EUT generating	D-M2a or D-M3
	NOTE: If the value	e of RBW used is d	lifferent fr	om RBW _{REF} in c	lause 5.8.2, use	the bandwidth
		in clause 4.3.10.1.				
		Table 15: Emissio	on limits i	n the Out Of Bar		
	Domain		Jency Ran OFB - 400		RBWREF	Max power limit
					10 kHz 1 kHz	-36 dBm -36 dBm
	OOB limits applicable to	flow - 200 l	$F_{low_OFB} - 400 \text{ kHz} \le f \le f_{low_OFB} - 200 \text{ kHz}$ fiow - 200 kHz $\le f < f_{low_OFB}$		1 kHz	See Figure 6
	Operational Frequency	f=	$f = f_{low_OFB}$		1 kHz	0 dBm
	Band (See Figure 6)	f=	$f = f_{high_OFB}$		1 kHz	0 dBm
	()	Figh_OFB 13	$F_{high_OFB} < f \le f_{high_OFB} + 200 \text{ kHz}$ $h_OFB + 200 \text{ kHz} \le f \le f_{high_OFB} + 400 \text{ kHz}$		1 kHz 1 kHz	See Figure 6 -36 dBm
		Fhigh_OFB	$\frac{F_{high_OFB} + 200 \text{ KHZ} \le 1 \le 1_{high_OFB} + 400 \text{ KHZ}}{F_{high_OFB} + 400 \text{ KHZ} \le 1}$		10 kHz	-36 dBm
Limit:			$f = f_c - 2.5 \times OCW$		1 kHz	-36 dBm
		f _c - 2,5 x OCW	$f_c - 2,5 \times OCW \le f \le f_c - 0,5 \times OCW$		1 kHz	See Figure 5
	OOB limits applicable to Operating Channel	· · · · · · · · · · · · · · · · · · ·	$f = f_c - 0.5 \times OCW$		1 kHz	0 dBm
	(See Figure 5)	•	$f = f_c + 0.5 \times OCW$		1 kHz	0 dBm
			$f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$ $f = f_c + 2.5 \times OCW$		1 kHz 1 kHz	See Figure 5 -36 dBm
	F _{high_OFB} is the u		rational Fre	quency Band. equency Band.		,
Test setup:	Spectrum	Analyzer	ted Table	E.U.T		
		Ground Refere	ence Pla	ne		
Test Procedure:	Refer to clause 5.	8.3.4 of ETS	I EN30	0220-1		
Test Instruments:	Refer to section 6	.0 for details				
Test mode:	Refer to section 5	.2 for details				
Test results:	Pass					

Domain	Test Segment (MHz)	Measurec Frequency (MHz)	Measurec Power (dBm/kHz)	Limit (dBm/kHz)	Result
	f ≤ flow_OFB - 400 kHz	862.612	-53.1	-36.0	Pass
	Flow_OFB - 400 kHz ≤ f ≤ flow_OFB - 200 kHz	862.830	-52.4	-36.0	Pass
OOB limits	flow - 200 kHz ≤ f < flow_OFB	862.857	-28.3	-20.4	Pass
applicable to	f = flow_OFB	863.031	-7.6	0	Pass
Operational	f = fhigh_OFB	869.968	-6.5	0	Pass
Frequency Band	Fhigh_OFB < f ≤ fhigh_OFB + 200 kHz	870.015	-27.50	-20.7	Pass
	Fhigh_OFB + 200 kHz ≤ f ≤ fhigh_OFB + 400 kHz	870.113	-49.3	-36.0	Pass
	Fhigh_OFB + 400 kHz ≤ f	870.415	-50.2	-36.0	Pass
	f = fc- 2.5 x OCW	862.872	-50.8	-36.0	Pass
OOB limits	$fc - 2,5 \times OCW \le f \le fc - 0,5 \times OCW$	862.847	-28.9	-20.6	Pass
applicable to	f = fc - 0,5 x OCW	862.928	-9.6	0	Pass
Operating	$f = fc + 0.5 \times OCW$	870.074	-8.4	0	Pass
Channel	$fc + 0.5 \times OCW \le f \le fc + 2.5 \times OCW$	870.116	-27.3	-20.4	Pass
	f = fc+ 2,5 x OCW	870.139	-51.6	-36.0	Pass

7.2.7 Transient power

Test Requirement:	ETSI EN 300 220-2 Claus	se 4.3.6			
Test Method:	ETSI EN 300 220-1 Claus	se 5.10			
Limit:	Table 2	3: Transmitte	r Transient Pow	er limits	
	Absolute offset from centre frequency	RBW _{REF}	Peak power limit	t applicable at measur	rement points
	≤ 400 kHz > 400 kHz	1 kHz 1 kHz		0 dBm -27 dBm	
Test procedure:	The output of the EUT shameasuring equipment. The measurement shall b centre frequency shall be These offset values and t Table 24. Tabl	e undertak set to an c heir corres	en in zero sp offset from the	ban mode. The e operating cen V configurations	analyser's itre frequency
	Measurement points:		Analyser RE	314/	RBW _{REF}
	offset from centre frequency -0,5 x OCW - 3 kHz 0,5 x OCW + 3 kHz		1 kHz		1kHz
	Not applicable for OCW < 25 kHz ±12,5 kHz or ±OCW	Max (R	3W pattern 1, 3, 1		1 kHz
	whichever is the greater -0,5 x OCW - 400 kHz 0,5 x OCW + 400 kHz		frequency/6 (see 100 kHz	e note)	1 kHz
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz		300 kHz		1 kHz
	EXAMPLE: If OCW is 25 kH 3 kHz. The rest			iding to one OCW offs t in Table 25, and if O	
	then the RBW va	alue correspon		offset frequency is 30	
	then the RBW va Table 2	alue correspon 5: Parameter	ding to one OCW s for Transient	offset frequency is 30) kHz.
	then the RBW va	alue correspon 5: Parameter Va	ding to one OCW	offset frequency is 30 Measurement At higher RBW value) kHz. tes s VBW may be
	then the RBW va Table 2 Spectrum Analyser Setting	alue correspon 5: Parameter Va 1	ding to one OCW s for Transient I lue	offset frequency is 30 Measurement) kHz. tes s VBW may be
	then the RBW va Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter	alue correspon 5: Parameter Va 1 500 Gau:	ding to one OCW s for Transient lue 0 ms ssian	offset frequency is 30 Measurement At higher RBW value) kHz. tes s VBW may be
	then the RBW va Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function	alue correspondent 5: Parameter Va 1 500 Gaus RI	ding to one OCW s for Transient lue 0 ms ssian //S	offset frequency is 30 Measurement At higher RBW value) kHz. tes s VBW may be
	then the RBW va Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter	alue correspondent 5: Parameter Va 1 500 Gaus RI	ding to one OCW s for Transient I lue 0 ms ssian AS hold	offset frequency is 30 Measurement At higher RBW value) kHz. tes s VBW may be
	then the RBW va Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode Kenton Setting	alue correspondent 5: Parameter Va 1 500 Gaus Ri Max 50 Continuo	ding to one OCW s for Transient lue 0 ms ssian AS hold 01 us sweep	offset frequency is 30 Measurement At higher RBW value clipped to its maximu) kHz. tes ts VBW may be im value
	then the RBW va Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep	5: Parameter 5: Parameter 1 500 Gau: Ri Max 50 Continuo nber of sweep p	ding to one OCW s for Transient lue 0 ms ssian AS hold 01 us sweep points and the sweet	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa) kHz. tes vs VBW may be im value me ratio as above
	then the RBW variable 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep The used modulation sha of Table 25 and a measur EUT shall transmit at lease	5: Parameter 5: Parameter 1 500 Gau: Rit Max 50 Continuo nber of sweep p points is used. Il be D-M3. rement sha t five D-M3	ding to one OCW s for Transient I lue 0 ms ssian AS hold 01 us sweep points and the sweet in the analyse Il be started 3 test signal.	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa er shall be set to for each offset f The peak value	tes s VBW may be im value ime ratio as above the settings frequency. The shall be
	then the RBW via Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep The used modulation sha of Table 25 and a measure EUT shall transmit at lease recorded and the measurementioned in Table 24. The recorded power value The recorded power value	s: Parameter 5: Parameter 1 5: Parameter 1 500 Gau Rt Max 500 Continuo nber of sweep p points is used. Il be D-M3. rement sha st five D-M3 ement sha	ding to one OCW s for Transient I lue 0 ms ssian MS hold 01 us sweep ooints and the sweet ooints and the sweet ooints and the sweet ooints and the sweet of the analyse II be started 3 test signal. II be repeated converted to	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa er shall be set to for each offset The peak value d at each offset	tes tes VBW may be im value ime ratio as above o the settings frequency. The shall be frequency
Measurement Record:	then the RBW via Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep The used modulation sha of Table 25 and a measure EUT shall transmit at lease recorded and the measurement mentioned in Table 24.	s: Parameter 5: Parameter 1 5: Parameter 1 500 Gau Rt Max 500 Continuo nber of sweep p points is used. Il be D-M3. rement sha st five D-M3 ement sha	ding to one OCW s for Transient I lue 0 ms ssian MS hold 01 us sweep ooints and the sweet ooints and the sweet ooints and the sweet ooints and the sweet of the analyse II be started 3 test signal. II be repeated converted to	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa er shall be set to for each offset The peak value d at each offset	tes tes VBW may be im value ime ratio as above o the settings frequency. The shall be frequency
Measurement Record: Test Instruments:	then the RBW via Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep The used modulation sha of Table 25 and a measure EUT shall transmit at lease recorded and the measurementioned in Table 24. The recorded power value The recorded power value	s: Parameter 5: Parameter 1 5: Parameter 1 500 Gau Rt Max 500 Continuo nber of sweep f opoints is used. Il be D-M3. rement sha at five D-M3 ement sha es shall be in clause 4	ding to one OCW s for Transient I lue 0 ms ssian MS hold 01 us sweep ooints and the sweet ooints and the sweet ooints and the sweet ooints and the sweet of the analyse II be started 3 test signal. II be repeated converted to	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa er shall be set to for each offset The peak value d at each offset	tes tes VBW may be im value ime ratio as above the settings frequency. The shall be frequency measured in
	then the RBW via Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nur different number of sweep The used modulation sha of Table 25 and a measure EUT shall transmit at lease recorded and the measurementioned in Table 24. The recorded power value RBWREF by the formula	stails	ding to one OCW s for Transient I lue 0 ms ssian MS hold 01 us sweep ooints and the sweet ooints and the sweet ooints and the sweet ooints and the sweet of the analyse II be started 3 test signal. II be repeated converted to	offset frequency is 30 Measurement At higher RBW value clipped to its maximu ep time shall be the sa er shall be set to for each offset The peak value d at each offset	tes tes VBW may be im value ime ratio as above o the settings frequency. The shall be frequency measured in

Measurement Data

	The lowest channel				
Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result		
F _c -0.5*OCW-1200kHz	-55.21	-27			
F _c -0.5*OCW-400kHz	-52.17	-27			
F _c -OCW	-47.29	0			
F _c -0.5*OCW-3kHz	-43.60	0	Pass		
F _c +0.5*OCW+3kHz	-41.93	0	Fass		
F _c +OCW	-49.36	0			
F _c +0.5*OCW+400kHz	-54.55	-27			
F _c +0.5*OCW+1200kHz	-55.52	-27			
	The highe	st channel			
Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result		
F _c -0.5*OCW-1200kHz	-55.32	-27			
F _c -0.5*OCW-400kHz	-52.95	-27			
F _c -OCW	-45.01	0			
F _c -0.5*OCW-3kHz	-42.60	0	Deep		
F _c +0.5*OCW+3kHz	-42.50	0	Pass		
F _c +OCW	-45.19	0			
F _c +0.5*OCW+400kHz	-54.53	-27			
F _c +0.5*OCW+1200kHz	-55.62	-27			

7.2.8	Α	djac	ent	Channel Pow	/er
		_			

Test Requirement:	ETSI EN 300 220-2 Clause 4.3.7.2					
Test Method:	ETSI EN 300 220-1 Clause 5.11					
Limit:	Table 26	Table 26: Adjacent channel power limits for transmitters with OCW \leq 25 kHz				
			Adjacent Channel power integrated over 0,7 x OCW	Alternate Adjacent Channel power integrated over 0,7 x OCW		
	OCW < 20 kHz	Normal test conditions	-20 dBm	-20 dBm		
		Extreme test conditions	-15 dBm	-20 dBm		
	OCW ≥ 20 kHz	Normal test conditions	-37 dBm	-40 dBm		
	000 2 20 1012	Extreme test conditions	-32 dBm	-37 dBm		
Test procedure:	Center frequency: The nominal operating frequency RBW=100Hz VBW>=3*RBW Span:>=5*operating channel width Trace detector: RMS Trace mode: Max hold					
Measurement Record:	Uncertainty: ± 1.5dB					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	N/A (Not applicable for OCW \geq 25KHz)					

7.2.9 Adaptive Power Control

Only used in 870,000 MHz to 875,800 MHz band equipment.

7.2.10 TX FHSS

Test Requirement:	ETSI EN 300 220	ETSI EN 300 220-2 Clause 4.3.10			
Test Method:	ETSI EN 300 220	ETSI EN 300 220-1 Clause 4.3.5			
Limit:		Table 2:	Number of Hop Channels		
	Operational frequency band	Number of hop channels	Maximum occupied bandwidth per hopping channel	Specific requirements	
	865 MHz to 868 MHz	≥ 58	≤ 50 kHz	< 1 % TX duty cycle (see note)	
	863 MHz to 870 MHz	≥ 47	≤ 100 kHz	< 0,1 % TX duty cycle (see note)	
		••	nsmission (not at each hopping cha		
	c) For FHSS tran		h a dwell time less tha	n 10 ms, a 0,1 % duty	
	d) Each hopping epoch.	channel of the	e shall be occupied at	least once during an	
	e) The return time to a hop channel shall be less than or equal to the lower of an epoch or 20 seconds.				
	f) The dwell time shall not exceed 400 ms.				
	For 863 MHz to 870 MHz FHSS equipment. The Maximum occupied bandwidth per hopping channel shell less or equal to 100kHz.				
Test procedure:	Center frequency: The nominal operating frequency				
	RBW=100kHz				
	VBW>=3*RBW				
	Trace detector: F	RMS			
	Trace mode: Max hold				
Measurement Record:	Uncertainty: ± 1.5dB				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Parameter	Manufacturer declared	Limit	Test Result
The number of hopping channels	47	≥47	Pass
The return time to a hop channel	2.5s	≤20s	Pass
Dwell time	130ms	≤400ms	Pass
The hop channel band width	100kHz	≤100kHz	Pass

Note: The above parameters have been declared by manufacturer.

Test Requirement:	ETSI EN 300 220-2 Clause 4.	.3.8			
Test Method:		ETSI EN 300 220-1 Clause 5.12			
Receiver setup:	RBW=30Hz, VBW=100Hz, De				
Limit:	Equipment Type	Limit			
	channelized equipment	limits stated in clause 8.1.4			
		1>.within the assigned operating frequency band. And			
	non-channelized equipment	2>.the radiated or conducted power is greater than the spurious emission limits			
Test procedure:		be measured, where possible in the absence smitter connected to an artificial antenna.			
		2. A transmitter without a 50 Ω output connector may be placed in a test fixture connected to an artificial antenna.			
	3. The measurement shall be humidity conditions,	 The measurement shall be made under normal temperature and humidity conditions, 			
	4. Transmitter shall power by a DC power source take place the original battery power source, the voltage from the test power source shall be reduced below the lower extreme test voltage limit towards zero.				
	5. Test the fundamental carrier supply voltage	5. Test the fundamental carrier frequency of the transmitter with nominal supply voltage			
	6. Whilst the voltage is reduce	ed the carrier frequency shall be monitored.			
		7. transmitter shall be operated at the maximum rated carrier power level, under normal test conditions;			
	8. Record the woking frequen	8. Record the woking frequency.			
Measurement Record:		Uncertainty: ±1 x 10 ⁻⁷			
Test Instruments:	Refer to section 6.0 for details	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.2.11 TX Behaviour under Low-voltage Conditions

Measurement Data:

Voltage (Vdc)	Channel	Frequency spot (MHz)	Power (dBm)	Limit	Result
	Lowest	863.1	9.51	Within Operational Frequency Band	Pass
V _{normal} =3.6V	Highest	869.9	9.47		Pass
V _{extreme} =3.3V	Lowest	863.1	4.83	863 to 870 MHz	Pass
	Highest	869.9	4.52		Pass

Remarks:

1. The EUT is belong to non-channelized equipment.

2. $V_{extreme}$ is the lowest operation voltage.

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2.12 Transmit spurious emissions

Test Requirement:	ETSI EN 300 220-2 Clause 4.2.2				
Test Method:	ETSI EN 300 220-1 Clause 5.9				
rest method.	Table 20: Parameters for TX Spurious Radiations Measurement				
		· · · · ·			
	Operating Mode	Frequency Range	RBW _{REF} (see note 2)		
	Transmit mode	9 kHz ≤ f < 150 kHz	1 kHz		
		150 kHz ≤ f < 30 MHz 30 MHz ≤ f < f _c - m	10 kHz 100 kHz		
		$f_c - m \le f < f_c - n$	100 kHz		
		$f_c - n \le f < f_c - p$	1 kHz		
Desciverentum		$f_c + p < f \le f_c + n$	1 kHz		
Receiver setup:		$f_c + n < f \le f_c + m$	10 kHz		
		f _c + m < f ≤ 1 GHz	100 kHz		
	NOTE 1: f is the measurement freque	1 GHz < f ≤ 6 GHz	1 MHz		
	f _c is the Operating Frequenc m is 10 x OCW or 500 kHz, n is 4 x OCW or 100 kHz, wl p is 2,5 x OCW. NOTE 2: If the value of RBW used for clause 4.3.10.1.	y. whichever is the greater. hichever is the greater.	_{EF} , use bandwidth correction from		
Test Frequency range:	25MHz to 6GHz				
Limit:	Frequency	Limit(operation)	Limit(standby)		
	47 MHz to 74 MHz 87.5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	4nW(-54dBm)	2nW(-57dBm)		
	Other frequencies below 1000 MHz	250nW(-36dBm)	2nW(-57dBm)		
	Above 1000 MHz	1uW(-30dBm)	20nW(-47dBm)		
Test setup:	Below 1GHz				
	At EUT Antenna Tower Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller				
	Above 1GHz				
	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver				
Test procedure:	Substitution method was levels of the EUT.	performed to determine	the actual ERP emission		

	Report No.: GTS201904000036E02
	The following test procedure as below:
	Below 1GHz:
	1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
	 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same
	location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected
	for the gain of the substitution antenna used relative to an ideal half- wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd)
	where: Pg is the generator output power into the substitution antenna. Above 1GHz:
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Measurement Record:	Uncertainty: ± 6dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Report No.: GTS201904000036E02

		The lowest chan	nel	
	Spurious	Emission		Teet Decult
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
75.81	Vertical	-78.31	-36.00	
121.52	V	-78.57	-36.00	
1726.20	V	-50.01	-30.00	
2589.30	V	-54.65	-30.00	
3452.40	V	-55.61	-30.00	
4315.50	V	-54.83	-30.00	Pass
55.31	Horizontal	-78.62	-36.00	Pass
104.57	Н	-77.43	-36.00	
1726.20	Н	-50.07	-30.00	
2589.30	Н	-53.75	-30.00	_
3452.40	Н	-54.08	-30.00	
4315.50	Н	-53.15	-30.00	_
	·	The highest chan	nel	·
	Spurious	Emission	Limit (dDm)	Test Result
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
159.41	Vertical	-78.25	-36.00	
847.36	V	-78.62	-36.00	
1739.80	V	-50.41	-30.00	
2609.70	V	-53.19	-30.00	
3479.60	V	-54.62	-30.00	
4349.50	V	-54.27	-30.00	
39.61	Horizontal	-77.16	-36.00	Pass
239.40	Н	-77.04	-36.00	
1739.80	н	-50.63	-30.00	
2609.70	Н	-53.81	-30.00	
3479.60	Н	-55.12	-30.00	
	1	1	-30.00	—

Tx in standby Mode

There were no emissions found above system measuring level (at least 10 dB below the limit)

7.3 Receiver Requirements

Rx Class	Classification, Table 1 of ETSI EN 300 220-1. Risk assessment of Rx performance							
		•						
1	8.3, 8.4, 8.5, 8.6	Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have						
		inherent safety of human life implications.						
4.5	0.4.0.0	Category 1.5 is an improved performance level of receiver						
1.5	8.4, 8.6	category 2.						
2		Category 2 is standard performance level of receiver.						
3	8.4, 8.6	Category 3 is a low performance level of receiver. Manufacturers have to be aware that category 3 receivers are not able to work properly in case of coexistence with some services such as a mobile radio service in adjacent bands. The manufacturer shall provide another mean to overcome the						
	weakness of the radio link or accept the failure.							
		NOTE: The receiver category should be stated in both the test report and in the user's manual for the equipment. Receiver category 3 will be withdrawn after December 31 st , 2018.						

The EUT (Receiver part) belong to Category 2 with no Polite spectrum access function.

7.3.1 Receiver sensitivity

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.2 Clear Channel Assessment threshold

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.3 Polite spectrum access timing parameters

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.4 Adaptive Frequency Agility

Not applicable, since the test applied to AFA quipment.

7.3.5 Adjacent channel selectivity

Not applicable, since the test applied to Category 1 equipment.

7.3.6 Receiver saturation at Adjacent Channel

Not applicable, since the test applied to Category 1 equipment.

7.3.7 Spurious response rejection

Not applicable, since the test applied to Category 1 equipment.

7.3.8 Behaviour at high wanted signal level

Not applicable, since the test applied to Category 1 equipment.

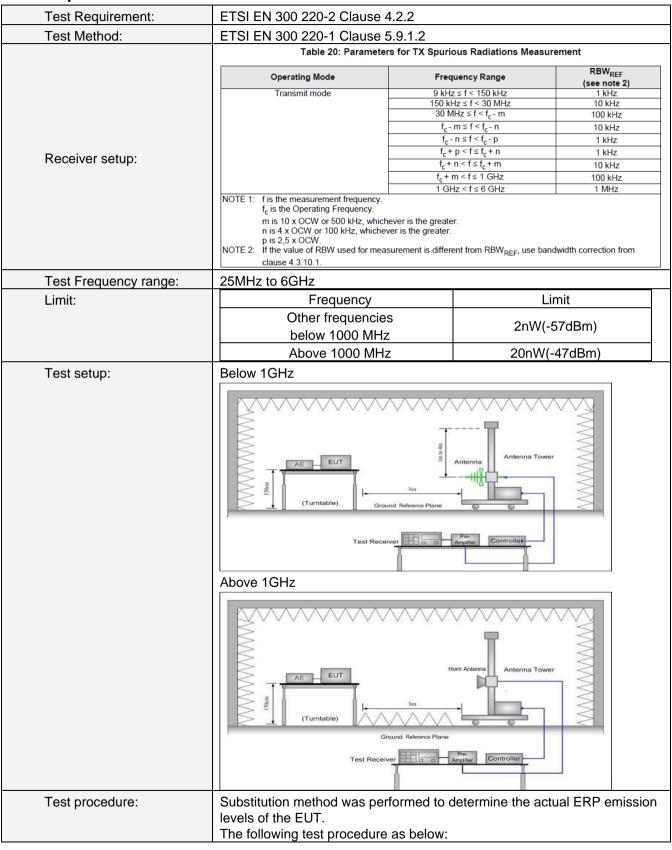
7.3.9 **Bi-Directional Operation Verification**

Not applicable, since this product is not support Bi-Directional operation function.

7.3.10 Blocking

Test Requirement:	ETSI EN 300 220-2 Clause 4.4.2					
Test Method:	ETSI EN 300 220-1 clause 5.18					
Limit:	Table 43: Blocking level parameters for RX category 1					
	Requirement	Limits				
		Receiver category 1				
	Blocking at ±2 MHz from Centre Frequency Blocking at ±10 MHz from Centre Frequency	≥ -20 dBm ≥ -20 dBm				
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -20 dBm				
		arameters for RX category 1.5				
	Requirement	Limits				
		Receiver category 1.5				
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -43 dBm				
	Blocking at ± 10 MHz from OC edge f_{high} and f_{low}	≥ -33 dBm				
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -33 dBm				
	Table 41: Blocking level p	arameters for RX category 2				
	Requirement	Limits				
		Receiver category 2				
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -69 dBm				
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -44 dBm				
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm				
		arameters for RX category 3				
	Requirement	Limits				
		Receiver category 3				
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm				
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -60 dBm				
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm				
	$A = 10 \log (BW_{kHz} / 16 kHz) BW is th$	e receiver bandwidth				
Test setup:	Signal Generator A					
	Signal Generator B	EUT				
Test procedure:	1. Two signal generators A and B sh combining network to the receiver	all be connected to the receiver via a antennaconnector.				
		2. Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal. Signal generator B shall				
	 Measurements shall be carried out at frequencies of the unwanted signal at approximately ±2 MHz and ±10 MHz, avoiding those frequencies at which spurious responses occur. 					
	 Initially signal generator B shall be generator A the level which still giv established, however, the level at adjusted below the sensitivity limit level of generator A shall then be in 	ves sufficient response shall be the receiver input shall not be given in clause 8.1.4. The output				
	5. Signal generator B is then switcher criteria (see clause 8.1.1) is just ex settings unchanged the power into replacing the receiver with a power	xceeded. With signal generator B				

	Report No.: GTS201904000036E02
	level shall be recorded. Alternatively, equipment having a dedicated or integral antenna may use a radiated measurement setup. For this, a test site from clause A.1 shall be selected and the requirements from clauses A.2 and A.3 apply.
	6. Signal generators A and B together with a combiner shall be placed outside the anechoic chamber and a TX test antenna shall be placed with the EUT's antenna polarisation. The EUT shall be placed at the location of the turntable at the orientation of the most sensitive position. Generator A shall be set in order to reach the EUT sensitivity limit +3 dB.
	7. The procedure shall be the same as for the conducted measurement. Bloking is the difference between signal generator B and signal generator A levels.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Measurement data:

The lowest channel						
Frequency offset	Signal generator A level (dB)	Blocking level (dB)	Limit (dB)	Result		
Flow-5% of Fc	-90.00	-34.00	-44.00			
Flow-10MHz	-90.00	-38.00	-44.00			
Flow-2MHz	-90.00	-45.00	-69.00	Deee		
FHigh+2MHz	-90.00	-45.00	-69.00	Pass		
FHigh+10MHz	-90.00	-37.00	-44.00			
FHigh+5% of Fc	-90.00	-34.00	-44.00			
	Th	e highest channel				
Frequency offset	Signal generator A level (dB)	Blocking level (dB)	Limit (dB)	Result		
Flow-5% of Fc	-90.00	-35.00	-44.00			
Flow-10MHz	-90.00	-39.00	-44.00	Pass		
Flow-2MHz	-90.00	-45.00	-69.00			
FHigh+2MHz	-90.00	-46.00	-69.00			
FHigh+10MHz	-90.00	-40.00	-44.00			
FHigh+5% of Fc	-90.00	-36.00	-44.00			

Remark: The provider declared that the receiver bandwidth is 200kHz.

7.3.11 Spurious emissions

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Below 10Hz: 1. On the test site as test setup graph above the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be coineted initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be cineted to the measuring receiver. 3. The transmitter shall be avieted on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1 m to 4m until a maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be cather wavelength for each frequencies, where the substitution antenna should be cather wavelength for each frequencies, where the substitution antenna should be cather above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by working planized, and with the signal generator curred to a particular test frequency, raise and lower the signal generator curred to a particular test frequency. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by teal conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output moving in the signal generator output power in the substitution antenna.		Report No.: G13201904000036E02
 the 1.5m support on the turnitable and in the position closest to normal use as declared by the provider. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. The test antenna shall be raised and lowered from 1 m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be battlivavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna as they relaxely. In such case the lower end of the antenna should be 0.3 m above the ground. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonratiating cable. With the antennas at both ends vertically polarized, and with the signal generator output and maximum reading of the sepectrum analyzer. Adjust the level of the signal generator output until the previous/ recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the sadjustion anten		
 shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be taised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. Feed the substitution antenna at the transmitter and with a signal generator connected to the antenna by polarized, and with the signal generator contected to the antenna the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antenna shorizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reduc		the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
 the measuring receiver shall be tuned to the frequency of the transmitter under test. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. Feed the substitution antenna as the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antenna is polarized vertically polarized, and with the signal generator compacting to the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test frequency. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna. Appeat step 7 with both antennas used relative to an ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna. Rep(dBm) - cable loss (dB) + antenna gain (dB		shall be chosen to correspond to the frequency of the transmitter. The
maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nornadiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and turther corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by reducing formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, j		the measuring receiver shall be tuned to the frequency of the transmitter
horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output to both antennas horizontally polarized for each test frequency. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by reducing the cable between above is the test site, change f		maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the
antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output to a particular test frequency, raise and lower the test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details		
generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna gain (dBd) where: Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 5.2 for details		antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of
frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details		generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half- wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna.Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.Measurement Record:Uncertainty: ± 6dBTest Instruments:Refer to section 6.0 for detailsRefer to section 5.2 for details		frequency.
where: Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details		by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half- wave dipole antenna by the following formula:
Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details		
Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details		Pg is the generator output power into the substitution antenna.
Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details		Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to
Test mode: Refer to section 5.2 for details	Measurement Record:	Uncertainty: ± 6dB
	Test Instruments:	Refer to section 6.0 for details
Test results: Pass	Test mode:	Refer to section 5.2 for details
	Test results:	Pass

Measurement Data

	_	The lowest cha	nnel	
Frequency (MHz)	Spurious Emission		Limit (dBm)	Test Result
	polarization	Level(dBm)	Limit (dBm)	rest Kesuit
116.72	Vertical	-79.10		
512.14	V	-78.30		
1427.58	V	-55.77		
2482.86	V	-55.62		
3727.76	V	-54.32	2nW/ -57dBm below 1GHz,	
4181.80	V	-53.90	below roriz,	
83.46	Horizontal	-75.70	20nW/ -47dBm above 1GHz.	Pass
623.74	н	-70.66		
1071.85	Н	-55.17		
2848.09	Н	-55.63		
3718.11	Н	-53.38		
5717.86	Н	-52.76		
		The highest cha	nnel	
	Spurious	Emission	Limit (dBm)	Test Desult
Frequency (MHz)	polarization	Level(dBm)		Test Result
279.68	Vertical	-77.72		Pass
703.89	V	-76.59		
1571.45	V	-54.71	2nW/ -57dBm below 1GHz, 20nW/ -47dBm above 1GHz.	
2573.54	V	-56.01		
4579.50	V	-54.90		
5708.22	V	-53.05		
64.37	Horizontal	-77.94		
507.15	н	-76.37		
1520.88	н	-57.20		
2984.23	н	-56.32		
3752.30	н	-52.06		
5427.81	Н	-51.97		

Rx in standby Mode

There were no emissions found above system measuring level (at least 10 dB below the limit)

8 Test Setup Photo

Reference to the <u>appendix I</u> for details.

9 EUT Constructional Details

Reference to the <u>appendix II</u> for details.

-----End------